skip to main content


Search for: All records

Creators/Authors contains: "Chheng, Phen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbon dioxide (CO 2 ) supersaturation in lakes and rivers worldwide is commonly attributed to terrestrial–aquatic transfers of organic and inorganic carbon (C) and subsequent, in situ aerobic respiration. Methane (CH 4 ) production and oxidation also contribute CO 2 to freshwaters, yet this remains largely unquantified. Flood pulse lakes and rivers in the tropics are hypothesized to receive large inputs of dissolved CO 2 and CH 4 from floodplains characterized by hypoxia and reducing conditions. We measured stable C isotopes of CO 2 and CH 4 , aerobic respiration, and CH 4 production and oxidation during two flood stages in Tonle Sap Lake (Cambodia) to determine whether dissolved CO 2 in this tropical flood pulse ecosystem has a methanogenic origin. Mean CO 2 supersaturation of 11,000 ± 9,000 μ atm could not be explained by aerobic respiration alone. 13 C depletion of dissolved CO 2 relative to other sources of organic and inorganic C, together with corresponding 13 C enrichment of CH 4 , suggested extensive CH 4 oxidation. A stable isotope-mixing model shows that the oxidation of 13 C depleted CH 4 to CO 2 contributes between 47 and 67% of dissolved CO 2 in Tonle Sap Lake. 13 C depletion of dissolved CO 2 was correlated to independently measured rates of CH 4 production and oxidation within the water column and underlying lake sediments. However, mass balance indicates that most of this CH 4 production and oxidation occurs elsewhere, within inundated soils and other floodplain habitats. Seasonal inundation of floodplains is a common feature of tropical freshwaters, where high reported CO 2 supersaturation and atmospheric emissions may be explained in part by coupled CH 4 production and oxidation. 
    more » « less
  2. Abstract

    Impacts of urban development on aquatic populations are often complex and difficult to ascertain, but population genetic analysis has allowed researchers to monitor and estimate gene flow in the context of existing and future hydroelectric projects. The Lower Mekong Basin is undergoing rapid hydroelectric development with around 50 completed and under‐construction dams and 95 planned dams. The authors investigated the baseline genetic diversity of two exploited migratory fishes, the mud carpHenicorhynchus lobatus(five locations), and the rat‐faced pangasiid catfish,Helicophagus leptorhynchus(two locations), in the Lower Mekong Basin using the genomic double digest restriction site‐associated DNA (ddRAD) sequencing method. In both species, fish sampled upstream of Khone Falls were differentiated from those collected at other sites, andNeestimates at the site above the falls were lower than those at other sites. This was the first study to utilize thousands of RAD‐generated single nucleotide polymorphisms to indicate that the Mekong's Khone Falls are a potential barrier to gene flow for these two moderately migratory species. The recent completion of the Don Sahong dam across one of the only channels for migratory fishes through Khone Falls may further exacerbate signatures of isolation and continue to disrupt the migration patterns of regionally vital food fishes. In addition,H. lobatuspopulations downstream of Khone Falls, including the 3S Basin and Tonle Sap system, displayed robust connectivity. Potential obstruction of migration pathways between these river systems resulting from future dam construction may limit dispersal, which has led to elevated inbreeding rates and even local extirpation in other fragmented riverine species.

     
    more » « less